Mechanical quality of tissue engineered cartilage: results after 6 and 12 weeks in vivo.
نویسندگان
چکیده
Traumatic events are a primary cause for local lesions of articular cartilage. If treated early, restoration of the initial joint geometry and integrity may be achieved. In large defects, sufficient material is not available to bridge the affected area. Heterologeous transplantation is not well accepted due to the risk of infection and immune response. Alternatives are cartilage-like structures, which may be cultured in vitro and transplanted into the defect site. Critical to the success of these new tissues are their mechanical properties. Goals of this study were to generate a hyaline-like cartilage structure, to evaluate its performance in vivo and to verify that its cellular and material properties meet those of native cartilage. Hyaline-like cartilage specimens were generated in vitro and implanted in the backs of nude mice. Specimens were explanted after 6 and 12 weeks, mechanically tested using an indentation test and histologically examined. In mechanical testing, stiffness and failure load significantly increased between weeks 6 and 12. At 12 weeks, mechanical properties of the hyaline-like cartilage were comparable to those of native nasal septal cartilage. Compared to native articular cartilage, the engineered tissue achieved up to 30-50% in strength and mechanical stiffness. In histological examination, specimens showed neocartilage formation. The mechanical testing procedure proved to be sufficiently sensitive to identify differences in properties between cartilage specimens of different origin and at different stages of healing. As an adjunct to histological analysis, mechanical testing may be a valuable tool for judging the utility of engineered cartilage prior to a broad clinical usage.
منابع مشابه
Does low-intensity pulsed ultrasound stimulate maturation of tissue-engineered cartilage?
Traumatic events are a primary cause of local lesions of articular cartilage. Tissue engineered, cartilage-like structures represent an alternative to current treatment methods. The time necessary for tissue maturation and the mechanical quality of the regenerate at implantation are both critical factors for clinical success. Low-intensity pulsed ultrasound has proven to accelerate chondrogenes...
متن کاملPartial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold
Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect. Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each. Procedures- Mesenchymal stem cells were isolated from h...
متن کاملPediatric laryngotracheal reconstruction with tissue-engineered cartilage in a rabbit model.
OBJECTIVES/HYPOTHESIS To develop an effective rabbit model of in vitro- and in vivo-derived tissue-engineered cartilage for laryngotracheal reconstruction (LTR). STUDY DESIGN 1) Determination of the optimal scaffold 1% hyaluronic acid (HA), 2% HA, and polyglycolic acid (PGA) and in vitro culture time course using a pilot study of 4 by 4-mm in vitro-derived constructs analyzed on a static cult...
متن کاملBehavior of tissue-engineered human cartilage after transplantation into nude mice.
Cartilage lacks the ability to regenerate structural defects. Therefore, autologous grafting has been used routinely to replace cartilaginous lesions. Because tissue engineering of human cartilage with the help of bioresorbable polymer scaffolds is possible in experimental models, the demand for the clinical application grows. In this study we present an analysis of the behavior of transplants ...
متن کاملDoppler echocardiographic findings in tissue engineered aortic valve in a sheep model
Background: Heart valve diseases are considered a common disease in human and animals, and valve replacement is an option for treatment of valvular diseases. Objectives: In this study efficacy of a tissue engineered valve in thoracic aorta was evaluated with transthoracic echocardiography. Methods: This study was undertaken on 6 male sheep. Echocardiography was performed on all sheep 24 hours b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research
دوره 53 6 شماره
صفحات -
تاریخ انتشار 2000